В современном мире ни один средний или крупный IТ-проект и/или решение не обходится без аналитики. В высоконагруженных информационных системах с большим объемом данных это особенно актуально.
Аналитическая подсистема позволяет анализировать как данные, поступающие в реальном времени, так и исторические данные, диагностировать проблемы, выявлять тренды, строить прогнозы и планы на будущее, список можно продолжать бесконечно… Казалось бы, в чем тут проблема? Прикрути BI-систему и строй себе отчеты на оперативных данных. К сожалению, когда речь заходит про объемы данных, характерные для систем класса BigData, то это перестает работать и нужно строить отдельный аналитический кластер, который синхронизируется с оперативным хранилищем.
Почему не работает подход с единой СУБД при очень больших объемах данных и как сделать так, чтобы данные в аналитическом слое не отставали от оперативных и при этом не растерять эти данные по дороге, я расскажу в своем докладе.