Как собрать облачную платформу для NLU-powered голосовых роботов и не облажаться

Нейронные сети, искусственный интеллект

Доклад принят в программу конференции

Тезисы

Сегодня коммуникационными роботами на базе NLU уже никого не удивишь: есть и коробочные решения вроде DialogFlow от Google, и опенсорс-фреймворки вроде Rasa, да и каждый уважающий себя ML-инженер хоть раз да и файн-тюнил BERT'а на задачу текстовой классификации. Нам в Voximplant захотелось собрать лучший опыт и дать возможность использовать state-of-the-art-модели и подходы людям далеким от машинного обучения — и все не покидая браузера в рамках облачной платформы. И, естественно, это оказалось не так-то и просто.

В рамках этого доклада Артем Бондарь, Head of AI компании, расскажет о тонкостях создания облачного AutoML-решения, какими трюками мы добивались низкой стоимости, сохранив возможность использовать тяжелые нейросети, кастомизированные под каждого клиента, как мы работали с разными языками и как мы подошли к задаче few-shot-learning, пряча от клиента под ковер всю игру с гиперпараметрами.

Закончил МФТИ, ранее занимался машинными обучением и продуктовой разработкой в компаниях Samsung и Parallels. Сейчас возглавляет направление машинного обучения в компании Voximplant, создавая serverless automl-платформу для автоматизации коммуникаций.

Voximplant

https://voximplant.com Облачная платформа по автоматизации коммуникаций. Клиентами являются более 500 российских и зарубежных компаний.

Видео