Потоковая обработка BigData для МТС
Доклад принят в программу конференции
Целевая аудитория
Тезисы
В докладе я расскажу, как мы в МТС собрали инструмент для потоковой обработки 10 миллионов событий в секунду, используя Scala(Java), Apache Spark Streaming и PostgreSQL. Почему выбрали Apache Spark Streaming, какие были проблемы на разных этапах разработки. Дам проверенные в бою рекомендации в части тюнинга Spark (concurrentJobs, speculation, memoryOverhead, memory, executors, cores и т.п.). Покажу, как мы подружили этот инструмент с Prometheus, Grafana, ELK, Kibana, и какие характеристики у железа, на котором это все работает.
CTO центра управления клиентскими данными в центре BigData МТС Диджитал. Занимается задачами построения систем класса LakeHouse. Много времени уделяет потоковой обработке данных. Кандидат физ.-мат. наук и доцент кафедры «Вычислительная математика и программирование» в ВУЗе. Один из авторов курса для Data Engineer в Яндекс Практикум.
МТС Digital
Видео
Другие доклады секции
BigData и машинное обучение