Как выжить под нагрузкой, имея 100 Тб в нешардированной MongoDB
Базы данных и системы хранения
Доклад принят в программу конференции
Тезисы
Очень часто, особенно на начальном этапе развития системы/проекта, в погоне за функциональными возможностями у нас банально не хватает времени подумать о том, что будет в долгосрочной перспективе с жизнеспособностью созданного решения под нагрузкой. К тому моменту (когда возникают проблемы) накопленные объемы данных могут исчисляться десятками и даже сотнями терабайт.
Взяв за основу реальный проект очень большой track&trace-системы, я покажу, что именно происходит с системой класса big data, в которой по разным причинам откладывали переход на использование шардированной архитектуры хранилища под нагрузкой. И самое главное, как выжить в этих условиях, меняя архитектуру решения на лету без downtime (DT).
CTO компании STM Labs.
STM Labs
Видео
Другие доклады секции
Базы данных и системы хранения