- Главная
- →
- DevOps и эксплуатация
Metrics are Not Enough: Monitoring Apache Kafka DevOps и эксплуатация
Gwen is a product manager at Confluent. She has 15 years of experience working with code and customers to build scalable data architectures, integrating relational and big data technologies. Gwen is the author of “Kafka - The Definitive Guide” and "Hadoop Application Architectures", and a frequent presenter at industry conferences. Gwen is a PMC member on the Apache Kafka project and committer on Apache Sqoop. When Gwen isn't building data pipelines or thinking up new features, you can find her pedaling on her bike exploring the roads and trails of California, and beyond.
Тезисы
When you are running systems in production, clearly you want to make sure they are up and running at all times. But in a distributed system such as Apache Kafka… what does “up and running” even mean?
Experienced Apache Kafka users know what is important to monitor, which alerts are critical and how to respond to them. They don’t just collect metrics - they go the extra mile and use additional tools to validate availability and performance on both the Kafka cluster and their entire data pipelines.
In this presentation we’ll discuss best practices of monitoring Apache Kafka. We’ll look at which metrics are critical to alert on, which are useful in troubleshooting and what may actually misleading. We’ll review a few “worst practices” - common mistakes that you should avoid. We’ll then look at what metrics don’t tell you - and how to cover those essential gaps.