Распределенные графовые СУБД — будущее для аналитики на Больших Данных?

Базы данных и системы хранения

Доклад принят в программу конференции

Тезисы

Графовые СУБД в последнее время стали очень популярны для аналитических задач. Традиционно к графовым СУБД относились скептически из-за их производительности и масштабируемости: например, очень популярная СУБД Neo4j пока практически не масштабируется на несколько узлов. Но появились новые системы, изначально разработанные как распределенные графовые СУБД, которые в состоянии уже хранить и обрабатывать десятки терабайт данных, а в скором будущем смогут масштабироваться до петабайт.

В чем существенные отличия графовых СУБД, какие преимущества и новые методы они предлагают для аналитики, и почему будущее аналитики на Больших Данных может оказаться именно за графовыми СУБД?

Director Engineering, TigerGraph

Некоторые прошлые проекты: Enosys Integration Server (сейчас часть Oracle), Sedna XML DBMS, система Texterra (Институт Системного Программирования), SciDB MPP DBMS, News360, TopRater, Huawei GaussDB.

TigerGraph

Строим самую производительную MPP Graph Database в мире.

Видео